

Frequency Comparisons via GPS Carrier-phase: Jump Processing, Temperature Compensation and Zero/Short-baseline Noise-floors

Daphna G. Enzer, David W. Murphy, and William A. Diener

Motivations and Challenges behind using GPS carrier-phase receivers for frequency transfer

Motivations:

- Operational environments: space, deep-space network, field-work
- Long-term monitoring

Challenges:

- Piecing data together into continuous sets
- Day boundary and batch boundary jumps
- Receiver resets/Losing satellites (data gaps and jumps)
- Sensitivity to temperature
- Antennae and cabling (Not addressed here. We used high quality ones.)

Outline

- 5-Stage Processing Algorithm
- Measurements
 - Ideal environment: zero-baseline, common-LO, temperature stable
 - Temperature impact, calibration and compensation
 - Reproducibility and receiver comparison
 - Zero vs. short baseline
 - Long baseline implications
- Conclusions

January 29, 2019

Background/Definitions: GIPSY, x(t), y(t), Single Receiver vs. Pair Data

- First we process with "GIPSY" [actually, GIPSY-OASIS: GPS-Inferred Positioning System and Orbit Analysis Simulation Software].
 - gives offset/delay x(t) between the receiver clock and either a remote or local reference clock
 - y(t) throughout talk is fractional frequency (point by point derivative of x(t))
- We present *mostly* receiver pair data, but first describe single receiver data.

Single Receiver Data: receiver-under-test's delay, x(t), relative to a reference clock/receiver

- How we calculate it:
 - use GIPSY in single receiver daily static Precise Point Positioning (PPP) mode
 - determine receiver's position once a day (using the ionosphere-free pseudo-range and carrier-phase observables -- PC and LC)
 - use JPL's GPS orbit and clock products (GPS satellite transmitter clocks determined relative to ground reference receiver)
 - reference clock chosen each day from list of clocks steered to UTC (usually a USNO receiver)
 - (All GIPSY users get the same reference clock.)

Background/Definitions: GIPSY, x(t), y(t), Single Receiver vs. Pair Data

Receiver Pair Data: relative delay x(t) between two receivers under test (for zero/short-baseline)

- How we calculate it:
 - derive it directly from GIPSY by assigning one receiver to be the reference
 - fix GPS satellite orbits (from JPL's GPS orbit and clock products), but solve for 1) transmitter clocks and 2) ground-based receiver that is NOT the reference
- Removes common-mode troposphere and ionosphere delay along each transmitter-receiver line
 of sight (gets absorbed into the estimated transmitter clock).
- x(t) may include fixed internal delays in the receivers-under-test (ok because we're using for relative frequency measurements)
- Can use a single carrier-phase frequency such as L1 instead of the LC/PC ionospheric-free combination (since the frequency-dependent ionospheric delay is accounted for in the estimated transmitter clocks). This further reduces noise.

5 Stage Processing Algorithm (all corrections are applied to x(t))

- Gather x(t) data between START and STOP times.
- 2. Correct jumps associated with data gaps (use median y(t)).
- 3. Remove slope (use median y(t)); flag points for stage-4 y(t)-filtering
- Correct jumps at flags (base decision on iqr which describes typical scatter)
- Remove another slope (linear best fit y(t) now)

Allan deviation calculations for data with gaps

Problem:

Allan deviation expects x(t) data equally spaced in time. Data gaps violate this.

Solution:

 Pad x(t) data with "bookkeeping" data in gaps to get back equally spaced x(t) data, solely as a placeholder for Allan deviation calculation. (Never used in rest of algorithm.)

Details:

- All $x(t-\tau)+x(t+\tau)-2*x(t)$ second difference terms computed.
- Some have real data, some placeholder.
- Only those with real data are summed to calculate the Allan deviation.

End result for Allan deviation:

- represents true noise character during the times that we have data
- does not reflect <u>all</u> events that happened during the timespan (because no information available during data gaps)

Measurements: Receivers Tested

Receiver Label	RECEIVER TYPE/MODEL	Location
JPLT	Ashtech Z12T	JPL FSTL
EM	DSAC Engineering Model	JPL (varied)
FM	DSAC Flight Model	JPL (varied)

- EM and FM built for DSAC
 (Deep Space Atomic Clock).
 - moved between different buildings at JPL during DSAC ground testing
 - on a thermally controlled plate when needed
- JPLT remained in our <u>thermally</u> <u>controlled</u> laboratory (Frequency Standards Test Lab -- FSTL).
- Measurements shown are noise floors taken before, in between, or after DSAC clock characterization campaigns.

Ideal-environment noise-floor: zero-baseline, common LO, common antenna

- FM-EM comparison:
 - Both in thermally controlled FSTL
- LO:
 - H-maser feeding 20.456 MHz (4channel) synthesizer. One channel went to each receiver.

Allan Deviation:

- Below 10⁻¹⁶ at a day
- Down to 1x10⁻¹⁷ at 5x10⁵ s, with 4x10⁻¹⁷ upper confidence interval (1-sigma; assumes white noise).

Temperature Impact and Compensation

- FM-EM zero-baseline noise-floor again:
 - Both in Bldg 1 at JPL.
 - EM on thermal plate.
 - FM had thermal changes from warmup as well as room temperature, 5C in this case.

FM-EM, no temperature compensation

FM-EM, yes temperature compensation

Temp. correction brings Allan deviation down to expected level. (Small impact seen on single receiver data as well.)

Temperature Calibration and Compensation

Example Temp. Calibration (EM):

- 45°C changes over several days
- Measure receiver temperature (T) internally
- Fit x(t) to a quartic polynomial in T(t).
- Coefficients become the calibration coefficients

Stability of Coefficients:

- 2 FM calibration runs, 1 year apart, gave similar coefficients.
- Temperature Compensation:
 determine temperature-dependent
 delay at every epoch; subtract this
 from the originally determined x(t)

Reproducibility: FM-EM Noise Floors

DATE RANGE (GPS TIME)	EM/FM Location
12/21/2016 00:00 -	FSTL
01/02/2017 23:59	
11/08/2015 00:00 -	Bldg. 2, JPL
11/08/2015 23:59	
11/14/2015 00:00 -	Bldg. 2, JPL
11/15/2015 23:59	
01/09/2015 00:00 -	Bldg. 1, JPL
01/11/2015 23:59	_
	12/21/2016 00:00 - 01/02/2017 23:59 11/08/2015 00:00 - 11/08/2015 23:59 11/14/2015 00:00 - 11/15/2015 23:59 01/09/2015 00:00 -

- Co-located receivers
- Different setups in different buildings, over 2 years, with and without temp. compensation.

Gives a feel for the reproducibility, and validates jump/temp. correction.

Reproducibility: FM-JPLT (and EM-JPLT) Noise Floors

Dataset	DATE RANGE (GPS TIME)	EM/FM Location
Run5	03/01/2017 05:50 - 03/08/2017 23:59	FSTL (EM in thermal chamber)
Run6	12/20/2014 02:00 - 12/22/2014 22:00	FSTL
Run7*	12/21/2016 00:00 - 12/28/2016 23:59	FSTL
Run8	11/23/2016 00:00 - 12/13/2016 23:59	FSTL

- Co-located receivers in FSTL.
- Different setups, over 2+ years, with/without temp. compensation.

Same validation as FM-EM data, plus: FM-JPLT results agree with EM-JPLT.

Comparison of Receiver Pair Noise Floors

 FM-EM slightly better than FM-JPLT (EM-JPLT)

FM and EM have slightly better measurement noise than JPLT

Run1 Data: FM-EM, FM-JPLT, Single Receiver (Just EM or FM)

Single Receiver has GPS time transfer noise

Short vs. Zero Baselines

FM-JPLT short-baselines:

- JPLT in FSTL
- FM in another building (138m or 376m away).
- H-maser was linked to these building via standard telecom fiber.
- Link noise may be contributing to short baselines at some tau.

Short baselines a bit degraded from zero baselines, but still useful for clock comparisons in buildings that do not have stable references.

Single Receiver (Long Baseline) Allan Deviations

- Single receiver examples from all the runs shown.
 - with impact now from GPS time transfer and possibly from LO drift
- All fall below the $10^{-12}/\sqrt{\tau}$ guideline (at 1 day), which is what DSAC used for planning.

Direct validation (for DSAC) that the jump and temperature correction aren't leaving artifacts on single receiver data at the $10^{-12}/\sqrt{\tau}$ level.

Outline → Conclusion

- 5-Stage Processing Algorithm explained
- Measurements
 - Ideal environment: zero-baseline, common-LO, temperature stable: $1x10^{-17}$ at $5x10^5$ s (upper confidence interval = $4x10^{-17}$)
 - Temperature impact, calibration and compensation: shown & explained
 - Reproducibility and receiver comparison: overlaid curves validate algorithm and temperature correction to the level shown here; EM and FM flight receivers slightly better than Ashtech
 - Zero vs. short baseline: short baseline has slightly worse Allan deviation, but still useful for many clock comparison needs
 - Long baseline: algorithm validated for single receiver curves at the $10^{-12}/\sqrt{\tau}$ level, out to a day. (what was needed for DSAC)

jpl.nasa.gov

Backup Slides

Allan deviations for Run1's FM-JPLT match others when shortening the time period to avoid the obvious glitches

Degraded curves due to the x(t) glitch shown for Run1

Run7: baseline for the other FM-JPLT/EM-JPLT curves

4-day subset of Run1 chosen to eliminate all visible glitches

However, Run1's FM-EM curve matched other zero-baselines, even for this time periods with FM-JPLT/EM-JPLT glitches.